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EFFICIENT RECURSIVE KERNEL CANONICAL VARIATE ANALYSIS FOR
MONITORING NONLINEAR TIME-VARYING PROCESSES

Liangliang Shang,'? Jianchang Liu*?* and Yingwei Zhang®*

1. School of Electrical Engineering, Nantong University, Nantong, jiangsu 226019, P R. China

2. College of Information Science and Engineering, Northeastern University, Shenyang, Liconing 17108189, P. R. China

3. State Key Laboratory of Synthetical Automation for Process Industiies, Northeastern University, Shenyang, Ligoning 110819, P R. China

Kernel canonical variate analysis (KCVA) cannot be adopted for monitoring nonlinear time-varying processes because of changes in variance,
mean, and correlation between variables. Efficient recursive kernel canonical variate analysis (ERKCVA) is thus proposed to monitor the non-
linear time-varying processes. In a high-dimensional feature space, the covariance matrix can be updated recussively by the exponentially
weighted moving average approach. The first-order perturbation theory is introduced to obtain the recursive singular value decomposition
of the Hankel matrix, which can significantly reduce the computational cost of the proposed method. Prediction errors and state variables
are non-Gaussian; thus, upper control limits can be derived from the estimated probability density function by kerned density estimation. The
proposed method is demonstrated by simulating a continuous stirred tank reactor. Simulation results indicate that ERKCVA could efficiently
capture the predefined normal and natural changes in nonlinear time-varying processes. In addition, ERKCVA can aiso identify 4 types of

sensor faults,

Keywords: kemel canonical variate analysis, first-order perturbation theory, nonlinear time-varying processes, monitoring

INTRODUCTION

To ensure safe operation and preduction efficiency in mod-
ern industrial processes, process monitoring has been
widely studied over the recent decades. Approaches
to process monitering are categorized as knowledge-based,
model-based, and data-driven."! The disadvantage of the
knowledge-based appreach is that it requires a large amount
of knowledge that is practically difficult to obtain. The data-
driven approaches such as principal component analysis (PCA)
and partial least squares (PLS) drew significant interest. More
recently, subspace identification methods (SIMs} have attracted
significant attention for industrial process menitoring,?* which
include numerical algorithms for subspace state space system
identification (N4SID), canonical variate analysis (CVA), and
multi-variable output-error state space (MOESP).!*! However, both
statistical process meoenitoring techniques and subspace iden-
tification based detection methods are based on assumptions
of linear variable relationships, thereby limiting their appli-
cation in many practical situations if these relationships are
nonlinear.

Nonlinear characteristics among different process variables
are commaonly observed in many complex process industries. A
typical linear correlation and a nonlinear correlation between
2 variables are shown in Ge et al,'®! in which the change
in variable 1 is not proportional to the change in variable 2.
Linear relationships are easy to capture using the traditional
multivariate statistical process control method but not non-
linear ones. Different processes may show different nonlinear
relationships among process variables. Auto-asSociative neural
networks'®”l and kernel function are the commonly adopted
nonlinear extension methods. A review referencel® suggests
that an artificial neural network cannot be a general nonlinear
extension, unlike the kernel function method. Kernel princi-
pal component analysis {KPCA) is one of the most widely

| VOLUME 96, JANUARY 2018 |

used nonlinear PCA extensions.”'? Is core idea is to first
map the data space into a high-dimensional feature space by a
kernel function and then perform correspending computation in
the linear feature space. CVA combined with the kernel method
has rarely been studied.!'?’ Regardless, the kernel extension of
canonical correlation analysis (CCA} is widely known particu-
larly in machine learning and pattern recognition.!""'! Samuel
and Cao"! proposed a novel kernel canonical variate analy-
sis (KCVA) technique for nonlinear dynamic process monitoring
in which the traditional CVA is performed in the kernel space
generated from Kernel PCA. Ciabattoni et al.'®! proposed a KCVA-
based nonlinear monitoring and diagnostic system for detecting
faults and bad occupant behaviours in a residential microgrid.
Huang et al.!'""! proposed quality-relevant nonlinear process mon-
itoring based on kernel input-output canonical variate analysis
{KIQCVA); the technique can evaluate whether the fault in the
process affects product quality. To meet the diverse requirements
of the market, processes have to experience predefined normal
changes, such as set point changes, input feed to a chemical reac-
tor, and so on.**2% Apart from the predefined normal changes,
natural changes, such as slow parameter variation, sensor drift,
and precision degradation, alse exist in many industrial pro-
cesses. The time-varying characteristics of the process are usually
reflected in changes in variance, mean, correlation, and order of
the system.*¥! Process monitoring based on time-invariant KCVA
may result in a large number of false alarms. Thus, a KCVA-based

* Author to whom correspondence may be addressed.
E-mail address: zhangyingwei@maif new.edu.cn

Can. J. Chem. Eng. 96:205-214, 2018
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1 | INTRODUCTION

Canonical variate analysis (CVA) has been applied successfully in process mon-
itoring. This paper proposes an efficient recursive CVA approach to monitor
time-varying processes. The exponential weighted moving average approach has
been adopted to update the covariance matrix of past observation vectors without
the need for recalling past training data. The most important challenge faced by the
recursive CVA algorithm is the high computation cost. To reduce the computation
cost, the first order perturbation theory was introduced to update the singular value
decomposition (SVD) of the Hankel matrix recursively. The computation cost of
recursive SVI based on the first order perturbation theory is significantly less com-
pared with conventional SV D. The proposed method is illustrated by the simulation
of the continuous stirred tank reactor system, Simulation results indicate that not only
can the proposed method effectively adapt to the natural changes of time-varying
processes but also the proposed method can also identify two types of abrupt
sensor faults.

KEYWORDS

Monitoring, recursive canonical variate analysis, the first order perturbation theory,
time-varying processes

latent structures (PLS) do not provide optimal orthogonal

As the competition of the global market increases. modern
industry must be more efficient and raise the quality of
end products. To achieve those purposes, process mon-
itoring has become highly important in recent years.
There are three main approaches for process monitoring:
the knowledge-based approach, the model-based approach,
and the data-driven approach.’ The disadvantage of the
knowledge-based approach is that it needs a large amount of
knowledge that, in practice, is not easy to obtain. Although the
data-driven approach has been widely applied, subspace iden-
tification methods have attracted significant attention for pro-
cess modeling and monitoring in the last two decades.*™ The
conventional subspace identification methods include canoni-
cal variate analysis (CVA), numerical algorithms for subspace
state space system identification (N4SID), and multi-variable
output-error state space.” Juricek et al® demonstrated that
the CVA model was more accurate than N4SID, Negiz and
Cinar’ reparted that balanced realization and projections to

state variables, but canonical variate state space realization
and orthogonal states PLS give minimal state variables that
are orthogonal.

Canonical variate analysis was first developed by
Hotelling* and was discussed in detail by Andeson.® Many
successful examples for monitoring with the CVA approach
have been already published. Negiz and Cinar'® applied the
canonical variate state space model to muliivariable statis-
tical monitoring and illustrated its performance in the milk
pasteurizatien process. Russell et al'' applied CVA to the
Tennessee Eastman process simulator for fault detection.
Juricek et al’ applied CVA to monitor the process faults in
a nonlinear centinuous stirred tank reactor (CSTR) system.
Swbbs et al’” applied CVA to fault detection and diagnosis
and used the Tennessee Eastman process simulator for case
studies. Canonical variate analysis shows good monitoring
performance for linear processes and stationary operating
conditions. However, because of the fluctuations of raw
materials, aging of the main components of the process,

Journal of Chemomerrics 2016; 1-10
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ABSTRACT: Canonical variate analysis (CVA) has been extensively applied in monitoring of different industrial processes.
However, conventional CVA is unable to handle the characteristics of time-varying processes. It tends to interpret the natural
changes of the process as faults, which would cause high false alarm rates. To solve this problem, a recursive canonical variate
analysis based on the first order perturbation theory (RCVA-FOP) is proposed to detect faults in time-varying processes.
Without recalling past training data, the covariance of past observation vectors is updated by the exponential weighted moving
average (EWMA) method. Moreover, the first order perturbation theory is introduced to realize the recursive singular value
decomposition {SVI}) of the Hankel matrix, which can reduce computational time significantly compared with the conventional
SVD. To identify the real reason for a fault, an EWMA contribution plot based on CVA is also proposed to enhance the fault
identification rate. The proposed method is verified with simulations of the continuous stirred tank reactor. Simulation results
indicate that the RCVA-FOP method not only can effectively adapt to the natural changes of time-varying processes but also can
detect and identify three types of faults, which include sensor precision degradation, heat exchanger fouling fault, and sensor bias.

1. INTRODUCTION

As the competition of the global market becomes increasingly
intense, modern industry has to be more efficient and raise the
quality of end products. As an essential technique, process
monitoring has already become more and more important in
recent years. The main process monitoring approaches consist
of three categories: the knowledge-based approach, the data-
driven approach, and the model-based approach.' The
disadvantage of the knowledge-based approach is that it
needs a large amount of knowledge, which iz not easy to
obtain in practice. Although the data-driven approach has been
widely applied, subspace identification methods (StMs) have
greatly attracted researchers’ artention for monitoring and
modeling in the last two decades.”™* Canonical variate analysis
(CVA), multivariable output-error state space (MOESP), and
numerical algorithms for subspace state space system

v ACS Publications @ 2016 American Chemical society

12149

identification (N4SID)® are the three conventional subspace
identification methods. Juricek et al.” certified that the accuracy
of CVA was higher than that of N4SID. Larimore” clarified that
only the CVA procedure has been developed on the basis of
optimal statistical inference principles, and as a result it achieves
optimal statistical accuracy while the others can be considerably
less accurate.

Many successful examples for fault detection and identi-
fication with the CVA approach have already been reported,
Negiz and Cinar® applied the canonical variate state space
(CVSS) model in milk pasteurization process monitoring,
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Recursive Canonical Variate Analysis for Fault Detection of
Time-Varying Processes

SHANG Liang-liang'® | LIU Jian-chang', TAN Shu-bin', WANG Guo-zhu'

(I. School of Information Science & Engineering, Northeasterr: University, Shenvang 110819, China; 2. Schooal
of Electrical Engineering, Nantong University, Nantong 226019, China. Corresponding author; SHANG Liang-
liang, E-mail; slI-13@ [63. com)

Abstract: Because CVA ( canonical variate analysis) is unable to adapt the characteristics of
time-varying processes, by which the normal changes of the process is easily identified as faults, it
IS Very necessary to propose a monitoring approach for time-varying processes. The exponential
weighted moving average approach was adopted to update the covariance of the past observation
vectors. The most critical problem faced by recursive CVA algorithm is the high computation
cost. To reduce the computation cost, the first order pesturbation theory was introduced to update
recursively the singular value decomposition (SVD) of the Hankel matrix. The computation cost
of recursive SVD based on the first order perturbation theory is significantly less compared to the
SVD. Recursive canonical variale analysis based on the first order perturbation { RCVA-FOP) was
applied in the Tennessee Eastman chemical process. Simulation results indicate that the proposed
method not only can effectively adapt to the normal change of time-varying processes, but also can
detect two types of faults.

Key words: first order perturbation theory; CVA ( canonical variate analysis); time-varying
processes ; faull detection
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